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Synopsis 

A stochastic approach, namely, a continuous time Markov chain (Markov process), is employed 
to analyze and model, in a unified fashion, both polymerization and dispersive mixing in a continuous 
flow reactor. Results include the distribution of numbers of active and dead polymers with chain 
length j both inside the reactor and at the exit. This approach can be extended to the determination 
of the degree of polymerization of a copolymer. Expressions are derived for the mean and variance 
of the number of monomers of a given type in a copolymer chain. The model can be applied to both 
the time homogeneous and heterogeneous processes. 

INTRODUCTION 

Stochastic approaches, predominantly Markov chains, have been widely 
employed to determine the distribution of the degree of polymerization in terms 
of the chain length or the number of monomer units in a polymer, or the com- 
position distribution of a polymer when several kinds of monomers are involved 
in the polymerization process.l-s Saidel and Katzg and Katz et al.1° have used 
a Markov process to model the molecular weight distribution for polymerization 
in a two-phase system. All earlier works, howkver, appear to have dealt only with 
polymerization in closed systems or batch reactors. Industrially, polymerization 
reactions are often carried out in open systems or continuous flow chemical re- 
actors rather than in batch reactors. When a continuous flow chemical reactor 
is employed, we should be concerned not only with stochastic transitions of each 
chemical species as in a batch reactor, but also with the stochastic transition of 
each chemical species between the interior and exterior of the react0r.l' Hence, 
the results from the stochastic treatment of polymerization in a batch reactor 
are not directly applicable to a flow reactor. 

The process of polymerization is continuous in time and discrete in state which 
denotes the degree of polymerization of the polymer under consideration; hence, 
it is advantageous to analyze or model it as a Markov process (continuous time 
Markov chain) rather than a Markov chain. In this work, the theory of the 
Markov process is employed to examine the degree of polymerization and the 
composition of copolymers in a continuous flow chemical reactor. This model 
is sufficiently general so that it can be applied to unsteady as well as steady flow 
reactors. 
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HOMOPOLYMERIZATION 

Consider polymerization of monomers of one type (homopolymerization) in 
a continuous flow reactor which contains solvent and (nonactive) monomers 
initially. Let x1(s) (s > 0) denote the rate of active monomers, in terms of the 
number, entering the reactor with the feed stream, which contains-both active 
and nonactive monomers. We assume that the active monomers react inde- 
pendently of one another in chain propagation and that the rate of chain prop- 
agation is not limited by the insufficient availability of nonactive monomers. 
Furthermore, we assume that the mode of mixing of the reacting mixture is on 
the microscopic scale (mixing of individual molecules) so that the diffusional 
effect is negligible. 

Let A; denote the state where a polymer chain in a flow reactor is composed 
of i monomers; in other words, the degree of polymerization corresponding to 
state Ai is i (i = 1 , 2 , .  . . , I ) .  We assume that the degree of polymerization of 
a chain cannot exceed the maximum number 1 and a chain at  any state Ai can 
terminate or exit from the reactor. In parlance of stochastic processes, states 
A l ,  AB, . . . , Al are transient states, and both termination and exit can be viewed 
as leading to the absorbing states; collectively, these processes are analogous to 
the so-called illness-death process.12 Furthermore, we assume that the tran- 
sition is constrained so that it occurs only between state Ai and state Ai+l or Ai-1. 
The former is the forward process of adding one monomer at  a time to the end 
of a polymer chain, and the latter is the reverse process of removing one monomer 
from the end of a chain. 

In free radical polymerization, e.g., polymerization of styrene or ethylene, free 
radicals R- for chain initiation are produced by an initiator I ,  such as benzoyl 
peroxide, either photochemically or thermally. A free radical attacks a monomer 
M to form an active monomer PI-. The active monomers thus formed interact 
with the nonactive monomers to propagate polymer chains. The reactions can 
be depicted as13-16 

initiation I I - 2R- 
R. + M -.- Pi. 

Pi- + M + P;+l- propagation 
Chain termination is assumed to be irreversible and can occur through the in- 
teraction of an active polymer Pi. with another molecule, e.g., a solvent molecule 
S ,  causing a transfer of the free electron to the solvent molecule, i.e., 

Pi. + S - PI + S- termination 

where PI denotes a dead polymer of chain length i. Such termination stops the 
growth of the chain without affecting its degree of polymerization. In ionic 
polymerization of monomer molecules, e.g., isobutylene molecules, the active 
species for chain initiation is an unstable ion, and the process proceeds essentially 
in the same manner as free radical polymerization. 

For a polymer chain, transition from one state to another, termination, and 
exit from the reactor are governed by the intensities of transition kij ,  the inten- 
sities of termination q;, and the intensities of exit p;. They are defined as fol- 
lows: 
k;j At + o(At )  = Pr {a chain in state Ai at  time t will be in state 

Aj (j = i f 1) at  time t + At),  (1) 
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7iAt + o ( A t )  = Pr (a chain in state Ai at time t will terminate at  time 

p iAt  + o ( A t )  = Pr (a chain in state Ai at time t will exit from the 

We define 

t + At),  (2) 

reactor at  time t + At]  (3) 

(4) kii = -(ki,i-l + ki, i+l+ 7i + pi) 
so that 

1 + &At + o ( A t )  = Pr (a chain in state Ai at time t will remain in the 
(5) 

If the reacting conditions, e.g., temperature, remain constant throughout the 
reactor over the entire time period, the intensity of transition of a polymer chain 
from state Ai to state A,, kij, and the intensity of termination of a polymer chain 
in state Ai, qi, may be assumed to be dependent on state Ai, or the chain length 
of the polymer i, but independent of time. Furthermore, the intensities of exit 
are also assumed to be independent of time, which is the case of a continuous 
stirred tank flow reactor.ll Let 

Pij(t - s) = transition probability that a chain in state Ai at 
(6) 

It can be shown that the transition probabilities ipi j ( t  - s)] satisfy the following 
Kolmogorov forward differential equations12J7: 

same state at  time t + At]  

time s will be in state Aj (inside the reactor) at  time t ,  i, j = 1,2 ,  . . . , 1.  

with the initial conditions 

In matrix notation, eqs. (7) and (7’) can be rewritten, respectively, as 
d - P(t - S) = P(t - s)K 
dt  (84 

and 

P(0) = I = identity matrix 

where 
K = [ki j ]  

and 

P(t - s )  = [pij(t - s ) ]  

Equation (7) or (8) is a first-order differential equation whose solution is well 
known.12Js 

We assume that the eigenvalues, p1, p2,. . . , PI, of the matrix K defined by its 
characteristic equation 

(11) IpI - KI = 0 

are real and distinct. The characteristic matrix B(m) is 
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B(m) = (p,I - K),  m = 1 , 2 , .  . .,I 
The column vector Qm(r )  defined as 

then is the eigenvector of K corresponding to the eigenvalue p,;  it is the rth 
column of the adjoint matrix (or the matrix of cofactor) of B(m). The solution 
to eq. (8) is given as 

(13)  P(t - s )  = Q(r )W( t  - s )Q- l ( r )  

where 

and 

w ( t - S ) =  I 
By expanding eq. (13), we obtain 

where Qj,(r) is the cofactor of the element B,j(m) of the matrix Q(r )  and I Q(r )  I 
is the determinant of Q ( r ) .  

Equation (16) states that given a polymer with chain length i at  time s ,  the 
probability that the chain length will be j 0’ = 1,2 , .  . . , 1 )  at  time t is p;j( t  - s ) .  
We assume that a t  time s the chain is in state A1 (active monomer or initiating 
species). Each of the X ~ ( S )  active monomers (in state A1 at  time s )  must be in 
one of the 1 states (A l ,  Az,  . . . , Al) or in the state of death due to termination or 
exit from the reactor a t  time t .  For example, an active monomer will be in state 
A5 if i t  undergoes stepwise propagation by the addition of four monomers to 
become an active polymer with chain length 5. Hence, 

1 1 

;=l j = l  
x i ( s )  = C N ; ( t )  + C D;(t)  + a( t )  (17) 

where 

N j ( t )  = random variable representing the number of active or unterminated 

Dj( t )  = random variable representing the number of dead or terminated 

polymers with degree of polymerization j in the reactor a t  time t 

polymers with degree of polymerization j in the reactor at time t 

a( t )  = random variable representing the number of all polymers that exited 
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from the reactor during the time interval (s , t )  

The probability that a polymer chain with degree of polymerization j will 
terminate in the interval ( s , t )  can be expressed as 

From the theory of the pure death process,1g once a chain terminates at  time 7, 

the probability that it will remain in the reactor until time t is equal to 

e-(t - rhj, s _< 7 _< t (19) 

The probability that a chain with degree of polymerization j will terminate and 
remain in the reactor during the time interval ( s , t )  is, from eqs. (18) and (19), 

(20) 

With plj(t - s) and qlj(t - s) known, it is seen that the probability distribution 
of the degree of polymerization in the reactor at time t ,  arising from x1(s) active 
monomers, is multinomial.20 Thus, 

Pr[Nl(t) = nl(t), . . ., N d t )  = ni(t); Dl(t) = dl(t), 
* - * , Dl( t )  = dl(t)l.l(s)l 

- Xl(S)! 

qlj(t - s )  = l t P 1 j ( 7  - s)vje-(t - 7)FjictT 

- 

The expected number and the variance of polymers with degree of polymerization 
j in the reactor at  time t are, respectively, 

E[Nj(t) + ~ j ( t ) ]  = J tx l ( s )  blj(t - s )  + 41j(t - s)] ds (22) 
0 

and 

Var[Nj(t) + Dj(t>] 
= Var[Nj(t)] + Var[Dj(t)] + 2 Cov[Nj(t), Dj(t)] 

= J t  x1(s) (plj(t - s ) [ l -  Plj(t - s ) ]  + qlj(t - s ) [ l -  qlj(t - s ) ]  

- 2Plj(t - s)qlj(t - s)lds (23) 
The integrals in eqs. (22) and (23) arise because the active monomers enter the 
reactor in a continuous manner and at  the rate x1(s) (0 < s < t ) .  

The probability that an unterminated polymer with degree of polymerization 
j will exit from the reactor in the time interval ( t ,  t + At) is 

Plj(t - s)pjAt (24) 
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Also, the probability that a terminated polymer with degree of polymerization 
j will exit from the reactor in the time interval ( t ,  t + At) is 

q1j(t - s ) p j A t  (25) 
Let Yj( t )  and Zj ( t )  be random variables representing, respectively, the numbers 
of unterminated and terminated polymers, both with degree of polymerization 
j ,  exiting from the reactor in the time interval ( t ,  t + At). Then, the distribution 
of Yj( t )  and Z j ( t )  are binomial, i.e., 

P r [ Y j ( t )  = y j ( t ) l x l ( s ) ]  = binomial [ x l ( s ) ,  p l j ( t  - s ) p j A t ]  

X [l - q1j(t - s ) p j A t ] [ x 1 ( ~ )  - z A t ) l  (27) 

The mean and variance of Yj( t )  are obtained by making use of the known for- 
mulae of the binomial distributiom20 Thus, we have, from eq. (26), 

E [ Y ~ ( ~ ) I =  J t  x l ( s ) b l j ( t  - s ) p j ~ t ] d s  (28) 
0 

and 

Var[Yj(t)] = I ' x l ( s ) [ p y ( t  - s ) p j A t ] [ l  - p l j ( t  - s ) p j A t ] d s  (29) 

Similarly, from eq. (27), the mean and variance of Z j ( t )  are obtained, respectively, 
as 

E [ Z j ( t ) ]  = J' x l ( s ) [ q l j ( t  - s ) ~ j A t ] d s  

0 

(30) 
0 

and 

In addition, suppose that Y;( t )  and Zf(t) denote the random variables rep- 
resenting, respectively, the numbers of unterminated and terminated polymers 
wit.h degree of polymerization j ,  which exit from the flow reactor during the time 
interval (0, t) .  Then, from eqs. (28) and (30), the expected numbers of Y;(t) and 
Zf(t)  are, respectively, 

and 
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It  is of practical interest to study the steady state behavior of a flow reactor 
or the performance of the reactor after the reactor has been in operation for a 
sufficiently long time, when the feed rate is fixed at  x 1. The steady state behavior 
of the reactor may be obtained from the unsteady state results by letting t ap- 
proach infinity. For instance, the expected number of polymers with degree 
of polymerization j in the steady state reactor is, from eq. (22), 

lim E[N, ( t )  + D;(t)]  = lim x 1  [ p l j ( t  - s) + ql j ( t  - s ) ]ds  (34) 

In practice, the initial number of active monomers may not be constant. If, 
for instance, active monomers are initiated photochemically, we might assume 
that the number of active monomers in the feed stream is distributed in a Poisson 
form, i.e., 

t - -  t - -  sot 

When x1(s) is the outcome of a random variable, all of the expressions derived 
earlier must be viewed as conditional on [X , ( s )  = x1(s)] .  Unconditional ex- 
pressions can be obtained by considering the distribution of X,(s) .  For example, 
when X, ( s )  is a random variable, E [ Y ; ( t ) ]  in eq. (28) is conditional on [X, (s )  
= x ~ ( s ) ] .  The unconditional mean is then obtained as 

E[Yj( t ) I  = St E [ X l ( s ) p l j ( t  - s )p jAt]ds  
0 

= Jt  ~ [ x l ( s ) l p l j ( t  - s )p jA t  ds (36) 

The stochastic model described so far can also be applied to a batch poly- 
merization reactor. Let us consider a batch reactor containing initially nl (0)  
active monomers, a sufficient amount of nonactive monomers, and/or solvent. 
The system corresponds to the following condition: 

p i = O ,  i = l , 2  ,..., 1 

Analogous to eq. (17), we have 

Thus, corresponding to eq. (22), the expected number of polymers with degree 
of polymerization j in the reactor at  time t is 

Similarly, the variance of polymers with degree of polymerization j in the reactor 
at time t can be expressed as 
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1 k;j # 0,  i = j  = 1 
= 0, otherwise 

q ; = O ,  i = l , 2  ,..., 1 
p i z o ,  i = 1  

= 0 ,  i = 2 , 3  ,..., 1 

According to eq. (4), k l l  can be related to the intensity of exit, p1, as 

1 
k11= -p1 (40) 

The probability that a molecule, which may be a tracer molecule, will remain in 
the reactor from time 0 to time t can be evaluated from eq. (7) as 

m ( t )  = exp (kilt) (41) 

Substitution of eq. (40) into eq. (41) yields 

p l l ( t )  = exp (-pit) (42) 

Assume that rl(0) tracer molecules are instantaneously injected into the reactor, 
i.e., the time dependence of the rate of tracer molecules supply to the reactor is 
of the delta function. Then the expected number of tracer molecules in the re- 
actor a t  time t can be evaluated from eq. (22) as 

E"l(t)I = x1(0) exp (-pit) (43) 

where p1 is the reciprocal of the mean residence time. This is the known result 
obtained from the deterministic mass balance approach for a completely ho- 
mogeneous flow reactor.".Z1 

COPOLYMERIZATION 

Simultaneous polymerization of two or more monomers by chain-growth 
polymerization is referred to as cop~lymerization.l~-~~ An initial system of 
different types of monomers will produce polymer chains of various lengths and 
various compositions. Thus, both the degree of polymerization and the com- 
positional distribution of a copolymer, containing any numbers of different 
monomers, are of practical importance. It will be shown that the theory derived 
in the previous section can be extended to the case of copolymerization. 

Assume that there are X different types of monomers M,., r = 1,2 ,  . . . , X, in 
a continuous flow reactor. A free radical attacks a monomer (from any of X 
different types) to form an active'monomer. With X different monomers in 
existence, we can assume that there will be X different active monomers, one 
corresponding to each type of monomers. A polymer chain starting with any 
active monomer is propagated by the addition of one monomer (from any of X 
different types) at each transition. Here, we assume that the transition is only 
from state A; to state A;+l. In other words, a polymer chain cannot come back 
to its original state once it leaves it. In the continuous time Markov chain 
(Markov process) under consideration, the polymer chain sojourns in a given 
state A; for a random length of time (duration of stay), which has an exponential 
density function according to the pure death processlg [also see eq. (19)l. After 
leaving state Ai, the polymer chain enters state A;+1. The process is essentially 
a Markov chain (discrete time) except that the transition occurs after a random 
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length of time rather than after a fixed time period. Let us consider a copolymer 
with degree of polymerization j or a copolymer in state Aj at time t .  The co- 
polymer with chain length j indicates that j - 1 transitions have taken place 
among the X states {M,; r = 1 ,2 , .  . . , A). If we study the process at  the time of 
transitions, we have the so-called imbedded Markov chain.22 For this Markov 
chain, the growing polymer chain is said to be in state M ,  if its terminal unit is 
a monomer of type m; it undergoes a transition to state M,  upon addition of a 
monomer of type r.  

As a polymer chain grows from a solution containing monomers, a monomer 
unit attaches itself to the active end of the chain (assuming, as usual, that there 
is only one). We assume that only the terminal units affect the rate of addition 
of the next monomer unit.5 Let h,, denote the probability that a polymer, with 
a monomer of type m as the end unit, adds a monomer of type r. Thus, h,, can 
be related to the corresponding rate constants and intensities by23 

(44) 
amrcr  

x 
C amrcr + 7; + P ;  

r = l  

hmr = 

where 
a,, = rate constant for adding a monomer of type r to a chain ending in a 

7; = intensity of termination of a polymer chain ending in a monomer 

p; = intensity of exit of a polymer ending in a monomer of type m 

C ,  = concentration of the monomers of type r in the reactor 

monomer of type m 

of type m 

Note that C ,  may be considered as a constant, if the availability of nonactive 
monomers of type r is not limited. Furthermore, the transition probability 
matrix for the imbedded Markov chain may be written as 

(45) 

Let h, (1) denote the initial probability of an active monomer to be in state M,. 

h(1) = [hl(l) hz(1) * * . h , ( l )  . - .hx ( l ) ]  (46) 

If the polymerization is initiated only with active monomers of type w,  then the 
initial probability vector h(1) is a row vector of 1 (the wth element) and 0’s (all 
the others). From the theory of the Markov chain with stationary transition 
probabilities, we have 

H = [h,,], m,  r = 1 , 2 , .  . . , X 
This X X X matrix, H, includes only the transient states of the process. 

The initial probability vector h(1) is a row vector of X elements, i.e., 

hG) = h(1) Hiv1 
such that 

(47) 

hG) = [hlG) h2G) - -. h, G) * * - hxG)] (48) 

where h,G) denotes the probability that a polymer with degree of polymerization 
j has a monomer of type r ( r  = 1 , 2 , .  . . , A) as the end unit. 

The intensities of transition kij, defined in eq. (1) for homopolymerization must 
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be modified to take into account the fact that monomers of X different types 
participate in the process of copolymerization. It is readily seen that for X dif- 
ferent monomers, the probability of transition from state Ai at  time t to state 
Ai+l at  time t + At becomes 

(49) 

Also, for the case of X different monomers, the intensity of termination of a 
polymer chain with degree of polymerization i, vi, in eq. (2) should be expressed 
as 

1 A X  
ki,i+lAt + o ( A t )  = C h,(i)h,p At + o ( A t )  [ m=l r= l  

Similarly, the intensity of exit of a polymer chain with degree of polymerization 
i ,  pi,  in eq. (3) may be written as 

Since we assume that the transition is only from state Ai to state Ai+l, i.e., 

ki j=O for j # i or i + 1, 

eq. (4) reduces to 

kii = - k i + l  + vi + Pi) (52) 
The transition probabilities (pij(t  - s)] are then readily obtained by following 
the same procedures presented in the previous section. Thus, the mean and 
variance of the number of copolymers with degree of polymerization j in the 
reactor a t  any time t may be obtained, respectively, from eqs. (22) and (23). 

It is of interest to compute the mean and variance of the number of monomers 
of a certain type in a chain with degree of polymerization j .  At time t ,  p l , ( t )  gives 
the probability of obtaining a copolymer containing j monomers. From the 
transition probability matrix H we can compute the mean and variance of the 
number of visits to any state M, starting from any state Mm. Let ,,, U, be the 
number of visits to state M, in j - 1 steps starting from state M,, i.e., 

j -  1 

n =O 
m u r  = C I', (53) 

where 
1, if the polymer chain is in state M, after n steps [ 0, otherwise 

I:, = 

The expected number of visits to state M, in j -1 steps starting from state M ,  
is then 

n=O 
;-1 

= C [ ( l - h k , ) . O + h " , - I ]  
n=O 
;-1 

= C hkr (54) 
n=O 
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where h;, is an n-step transition probability. Since M ,  can be one of the X 
states, we see that for all states [see eqs. (44) and (4511 

(55) 
j -1  I - HJ 
n =O I - H  [E(mUr)] = C H" = ~ - - Tj, m, r = 1 , 2 , .  . . , X 

Starting with the initial probability vector h(1) given by eq. (46), we have 

h(1)Tj = [TiTZ*.- T, . - -Tk]j  (56) 

where T, is the expected number of monomers of type r in a copolymer with chain 
length j .  The corresponding variance is 

(57) Var[,U,] = E[(,U,)2] - (E[,U,])2, m, r = 1 , 2 , .  . . , X 

for a large value of j ,  
h 

w = l  
E[(mUr)21 C hmw[E(wUr + 

h 

w = l  
= C hmw[E(wUr)2 + 2 E(wUr)arnr  + am,] (58) 

where a,, is the Kronecker delta. Since M ,  is one of the X states, we have for 
all states (m,  r = 1 , 2 , .  . . , A) that 

[E(mUrI2] = H[E(rnur)2] + 2(HTj)diagonal 4- (HJ)diagonal 

and, therefore, 

[E(mUr>2] = [I - H1-l [2(HTj)diagonal + (HJ)diagonal] (59) 

where J is a X X X matrix with 1 as its elements. Hence, in matrix notation, eq. 
(57) can be rewritten as 

[Var(rnUr)l = [E(mur)2 - P ( m u r ) 1 2 1  
= V j ,  j = 1 , 2  ,..., 1 (60) 

Substitution of eqs. (55) and (59) into eq. (60) yields 

Vj = [I - H]-'[2WTj)diagona1+ (HJ)diagona~I - TjS9) (61) 

where T)s9) is obtained from T, by squaring each elements. Starting with the 
initial probability vector h( l), we have 

h(1)Vj = [V1V2 - - V, - * V,]j 

where V, is the variance of the number of monomers of type r ( r  = 1 , 2 , .  . . , X) 
in a polymer chain with degree of polymerization j .  

TIME HETEROGENEOUS PROCESS 

In the preceding sections, the intensities of transition, termination, and exit 
are assumed to be independent of time (time homogeneous process). However, 
the intensities of transition, kij, and intensities of termination, qi ,  may not be 
time independent if, for instance, there are spatial andlor temporal variations 
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of the temperature or monomer concentrations in the reactor. Even for constant 
kij and vi, the intensities of exit, pi,  may be a function of age or duration of stay 
of a polymer chain in the reactor. This is especially true for a reactor where the 
composition is not uniform throughout it. 

If the elements of the matrix K in eq. (9) are continuous functions of time (time 
heterogeneous process), a unique solution to the differential equation (8) is ob- 
tainable; but it may not be in closed form.16 In general, it  is in the form of 

P(t - s )  = G(t - s )  = I + G(T - s ) K ( T  - S ) ~ T  Jt 
The matrix G(t - s )  is unique and can be obtained by iteration according to the 
matrix sequence 

Go = I = identity matrix 

Gm+l = I + J t  G,K(T - s ) ~ T ,  rn = 0,1, .  . . (63) 

It can be shown that Gm+l converges uniformly to G(t - s ) .  With P ( t  - s )  ob- 
tained here, all the previous results obtained for the time homogeneous process 
are also applicable to the time heterogeneous process. However, p j  and 7, have 
to be expressed as functions of time. For example, eqs. (18) and (19) are re- 
written as, respectively, 

and 

e - s : p , ( 0 4  (19’) 

Naturally, eq. (62) should also be applicable to a time homogeneous process in 
which the intensity matrix K is not a function of time. By iterating eq. (62) for 
the time homogeneous process, we finally obtain 

P(t - s) = P(0) exp[(t - s)K] 

which is an alternative form of eq. (13).12 
In the previous section on copolymerization, we assume that the concentration 

of each type of monomer is constant. Then, the transition probability h,, given 
in eq. (44) is approximately independent of time. However, in general, if the 
concentrations of monomers vary with time, h,, would be time-dependent. For 
time-dependent intensity functions, eq. (47) becomes 

h(j) = h(1) Jfi’ H, 
n = l  

The mean and variance of the number of monomers of a certain type in a co- 
polymerj, given by eqs. (56) and (61), remain the same except that [E(,Ur)] or 
Tj in eq. (55) is now expressed as 

j - 1  n 

n=O i=o 
Tj = C n Hi 
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DISCUSSION' AND CONCLUSIONS 

It is well known that a chemical reaction, e.g., polymerization, is essentially 
a stochastic process. It is also well known that the flows in continuous flow re- 
actors are often chaotic and stochastic in nature. Therefore, the present unified 
stochastic approach is more fundamental than the deterministic or partially 
stochastic approaches in analyzing the complex mechanisms of polymerization 
occuring in a flow chemical reactor. A variety of information (such as the 
polymer size distribution and the copolymer composition distribution), which 
are extremely difficult to obtain by means of deterministic approaches, can be 
obtained from the present unified stochastic approach. 

The present stochastic model can be extended in a straightforward manner 
to a flow system with a complex geometry, e.g., a system containing rz totally 
interconnected well-mixed tanks, or a reactor with a complex flow pattern, e.g., 
an incompletely mixed tank reactor or a multiphase reactor. The intensity 
matrix K given in eq. (9) and the corresponding performance equations for such 
a system can be modified without much difficulty. 

To examine the validity and applicability of the model, estimates of the in- 
tensities of transition, kij, and termination, ~ i ,  must be obtained. This can be 
accomplished with a batch reactor as long as the patterns of local mixing in the 
batch and the flow reactor are the same. The exit age distribution or the density 
function of the residence times of polymers, f ( t ) ,  in an arbitrary reactor may be 
obtained from the concentration-time function by injecting a specified quantity 
of polymers into the reactor in the form of a delta function. The probability of 
the residence time of a polymer, T (which is considered to be a random variable), 
being in the interval ( t ,  t + d t )  is equal to the probability of the polymer being 
in the reactor with age t multiplied by the probability of exiting from the reactor 
during the interval ( t ,  t + d t ) ,  i.e., 

Pr[ t  < T < t + d t ]  = P r [ T  > t ] p ( t ) d t  

or 

Thus, once the exit age distribution is determined through a tracer experiment, 
the intensity of exit, p ( t ) ,  is obtained as 

provided that hydrodynamic conditions in the reactor for this tracer experiment 
can be maintained similar to those in a flow reactor with chemical reaction. 
When the maximum degree of polymerization 1 is large, the effort required for 
calculations makes the machine computation necessary. However, the com- 
putation may be facilitated by the fact that the matrix K is either a bidiagonal 
or a tridiagonal matrix. 

A continuous time Markov chain (Markov process) is employed to model a 
polymerization process in a continuous flow chemical reactor. Expressions are 
derived for the distributions of the degree of polymerization of active and dead 
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polymers at any time t in the reactor as well as at the exit. It is possible to extend 
the treatment in a rigorous manner both to the determination of the degree of 
polymerization of a copolymer and the compositional distribution for any type 
of monomers in it. The mean and variance of the number of monomers of a given 
type in a copolymer chain are derived. The model can also be applied when the 
reactivity of the growing chains is influenced by a limited number of monomers 
preceding the active end. In this case, it is expected that the intensities of 
transition will be functions of time for which the theory in the preceding section 
would apply. It is worth emphasizing again that the present stochastic model 
is general and is applicable also to situations where the input rate of active 
monomers, x ~ ( s ) ,  the intensities of exit, pi,  the intensities of termination, qi, 
and/or the intensities of transition, ki,, are not constant, but are functions of time 
(time heterogeneous processes). In spite of their practical importance, time 
heterogeneous processes have received little attention in the literature. 

NOMENCLATURE 

state of a polymer, i indicating its degree of polymerization 
rate constant for adding a monomer of type r to a chain ending in a monomer of 

concentration of the monomer of type r 
random vaiiable representing the number of terminated polymers with degree of 

density function of the residence time or exit age distribution 
initial probability vector 
probability that a polymer havin'g a monomer of type m as an end unit will add a 

monomer of type r 
transition probability matrix for the imbedded Markov chain 
initiator 
intensity of transition of a polymer chain from state Ai to state Aj 
intensity matrix as defined in eq. (9) 
maximum number of monomers in a polymer 
monomer 
random variable representing the number of unterminated polymers with degree of 

probability that a chain in state Ai a t  t imes will be in state Aj a t  time t 
transition probability matrix as defined in eq. (10) 
unterminated (active) polymer with degree of polymerization i 
terminated (dead) polymer with degree of polymerization i 
cofactor of the element Brj(m) of the matrix Q(r)  
probability that a polymer with chain length j will terminate and remain in the 

free radicals 
solvent molecule 
the expected number of monomers of type r in a copolymer with chain length j 
the number of visits to state M,  in j - 1 steps starting from state M, 
variance of the number of monomers of type r in a copolymer with chain length j 
rate of active monomers, in terms of the number, entering the reactor a t  time s 
random variable representing the number of unterminated polymers with degree of 

random variable representing the number of unterminated polymers with degree of 

random variable representing the number of terminated polymers with degree of 

random variable representing the number of terminated polymers with degree of 

type m 

polymerization j a t  time t inside the reactor 

polymerization j at  time t 

reactor during the interval (s, t )  

polymerization j exiting from the reactor in the interval ( t ,  t + A t )  

polymerization j exiting from the reactor during the inverval(0, t )  

polymerization j exiting from the reactor in the interval ( t ,  t + A t )  

polymerization j exiting from the reactor during the interval (0, t )  
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Greek Symbols 

4 t )  

6wr Kronecker delta 
9i 
7; 
Pi 
P; 
Pi 

random variable representing the number of polymers that exited from the reactor 
during the interval (s, t ) 

intensity of termination of a polymer chain with degree of polymerization i 
intensity of termination of a copolymer chain ending in a monomer of type m 
intensity of exit of a polymer chain in state A, from the reactor 
intensity of exit of a copolymer chain ending in a monomer of type m 
eigenvalue of the intensity matrix K 
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